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Abstract

We examine a new method of producing reduced order models for LTI systems
which attempts to minimize a bound on the peak error between the original and re-
duced order models subject to a bound on the peak value of the input. The method,
which can be implemented by solving a set of linear programming problems that are
parameterized via a single scalar quantity, is able to minimize an error bound subject
to a number of moment matching constraints. Moreover, because all optimization is
performed in the time-domain, the method can also be used to perform model re-
duction for infinite dimensional systems, rather than being restricted to finite order
state space descriptions. We begin by contrasting the method we present here to two
classes of standard model reduction algorithms, namely moment matching algorithms
and singular-value-based methods. After motivating the class of reduction tools we
propose, we describe the algorithm (which minimizes the L1 norm of the difference
between the original and reduced order impulse responses) and formulate the cor-
responding linear programming problem that is solved during each iteration of the
algorithm. We then prove that, for a certain class of LTI systems, the method we pro-
pose can be used to produce reduced order models of arbitrary accuracy even when
the original system is infinite dimensional. We then show how to incorporate moment
matching constraints into the basic error bound minimization algorithm, and present
two examples which utilize the techniques described herein. We conclude with some
comments on extensions to multi-input, multi-output systems, as well as some general
comments for future work.
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order model, and Padé/TBR reduced order model for the input cos(100t). . . 32

6



1 Introduction

The study of model order reduction (MOR) is a problem that has pervaded the engineer-
ing community for over thirty years. Stated simply, MOR attempts to replace a system
description that is deemed “complex” by a simpler, approximate model that still accurately
represents the salient features of the original system. The motivation for the inception
of MOR tools from a simulation standpoint is clear: problems with fewer components, in
general, take less time to simulate, so creating tools which reduce the size of a model
without significantly sacrificing accuracy has great potential impact.

Much of the original work in MOR has roots in the systems and control community,
with Moore’s work on principle component analysis [15] and Glover’s work on optimal
model reduction in the Hankel norm [9] being the basis for a number of model reduction
tools that are still used today. Outside of the realm of control, a great deal of attention
has been placed on the development of MOR tools for simulation purposes: Bashir et. al.
investigated a method of producing reduced order models for simulation when the initial
condition is known to lie in a certain pre-specified set [2]; Gad et. al. proposed a method
for producing reduced order models for predicting the DC solution of large nonlinear cir-
cuits [8]; Nakhla et. al. devised a method for model reduction of interconnect circuits in
[16]; Rewienski et. al. in [19] and Bond et. al. in [4] devised separate approaches to MOR
of nonlinear circuits via piecewise linearization and projection; Roychowdhury developed
a method for the MOR of time-varying systems that has applications for modulation and
sampling-type systems [20]; Dong et. al. developed a method of model reduction for non-
linear systems via representation by piecewise-polynomial functions [5]; Feldmann et. al.
investigated a moment matching method for linear networks called the Padé via Lanczos
method [7], and Odabasioglu et. al. developed a passivity-preserving MOR method for
linear networks [17]. The paper by Gugercin et. al. [10] provides a comparison of the
performance of several different linear model reduction techniques that are used today.

1.1 MOR for LTI Systems: Moment matching vs. Singular Values

As the focus of this paper revolves around MOR for LTI systems, we briefly review two of
the main classes of model reduction methods for LTI systems, along with their associated
benefits, as a means of motivating the particular problems and techniques that we inves-
tigate here. Two MOR methods for LTI systems that are popular in the literature today
are methods which perform moment matching of transfer functions, and methods which
compute singular value decompositions (SVD) of a linear operator that is associated with
the state space description of the LTI system undergoing reduction. Moment matching
methods operate by constraining either the value of the transfer function or some deriva-
tive (moment) of the transfer function to be the same for both the original and reduced
order models at a specified set of frequencies (i.e., G(msl

)(sl) = G
(msl

)
r (sl), m = 0, 1, . . .,

l = 1, 2, . . . , L, where G(s) represents the transfer function of the original system, Gr(s)
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represents the transfer function of the reduced order system, and sl ∈ C represent N
complex frequencies to be matched). One advantage of moment matching is that it can
be used to preserve key frequency response characteristics between the original and re-
duced order systems. For instance, moment matching methods can be used to ensure
that the DC gain for a reduced order system is the same as in the original system, an
important property for systems which are primarily driven by step inputs. A disadvantage
of these methods, however, is that, in general, they do not provide bounds on the error
between the response of the original system and the response of the reduced order sys-
tem for arbitrary inputs. Hence, while moment matching methods provide a guarantee
that the steady-state response will be the same for both the original and reduced order
models for a finite set of sinusoidal inputs, there are typically no provable guarantees that
the response of the reduced order system will be accurate at frequencies other than the
matching frequencies.

By contrast, SVD-based methods for model reduction do provide bounds on the error
between the responses of the original and reduced order systems. Based upon computing
the singular values of a joint controllability/observability measure, these methods produce
a truncated state space description of the original system to serve as a reduced order
approximation. When the inputs of interest are finite power signals, the outputs of the
reduced order model are guaranteed to be “close” to the outputs of the original model
in the sense that the power in the difference between the original system output and
reduced system output is small.1 While such results provide a notion that the reduced
order models are “good” for a wide range of inputs, classical SVD-based methods suffer
from the fact that they do not incorporate moment matching constraints into the problem
set-up. Hence, if exact matching of certain frequency response properties between the
original and reduced order models is critical, SVD-based methods are typically not the
method of choice.

If possible, it is clearly desirable to develop MOR tools which can both incorporate
moment matching constraints into the reduction problem, and provide error bounds for
general classes of inputs. To date, however, results that provide for mixed formulations
which incorporate both error bounds and which simultaneously preserve general prop-
erties of the frequency response are limited. Phillips et. al. in [18] provide an algorithm
which, while not able to preserve moment matching properties explicitly, does provide an
SVD-based method that is guaranteed to preserve passivity of the reduced order model.
Gugercin et. al. in [11] explain how the solution to a model reduction problem which min-
imizes the H2-norm of the corresponding error system is guaranteed to match moments
at mirror images of the pole locations of the reduced order model (e.g., G(−sl) = Gr(−sl)
where sl ∈ C is a pole of the reduced order model Gr(s)). This result is limited, however,
since the matching frequencies cannot be chosen arbitrarily. Moreover, certain useful fre-
quencies cannot be matched (such as frequencies along the imaginary axis), since the
reduced order models are stable and, hence, Re{sl} < 0.

1A similar statement exists when one considers inputs that are finite energy signals
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Some recent work by Astolfi in [1] considers a technique which can simultaneously
match moments and produce small error bounds via the introduction of a free parameter
into the state space description of the corresponding reduction problem. To the knowledge
of the author, the result is the first of its kind and, hence, takes an important first step into
investigating the problem of mixed moment matching/error-bounding reduction methods.
Nevertheless, when attempting to use model reduction tools for the inherent purpose of
simulation, the error bounds produced by this tool— and the error bounds produced by
all SVD-based reduction methods—are not the most desirable because of the way they
measure error. One of the primary motivations of the work we present herein is that error
is measured in a manner that is more useful for designers than the standard measures
of error. We now present an example to illustrate the main issue along with a proposed
resolution.

1.2 Measures of Error: Power vs. Peak Amplitude

Fig. 1 illustrates a hypothetical example where the red signal represents the output of an
original full order system and the blue signal represents the output of a reduced order
model that was created using an SVD-based technique. The moral of the example is
this: an SVD-based method will consider the red and blue responses to be “close” be-
cause the power in the difference between the two signals is apparently small (note that
the large spike in the full-order signal is very narrow and, hence, contributes very little
energy). While such a measure of closeness may be appropriate for certain applications,
if the signals depicted in Fig. 1 represent a critical parameter whose value should never
exceed 1, then it is clear that the reduced order model does not adequately represent the
original model since the response of the full-order system significantly exceeds 1 while
the response of the reduced order system stays well below 1.

From a simulation perspective, a somewhat more useful notion of error can be mea-
sured in terms of peak amplitude. Formally, if we consider right-sided continuous-time
signals y : [0,∞) → R, then the peak amplitude can be taken as the standard infinity
norm:

||y||∞ = sup
t≥0

|y(t)|. (1)

In the context of model reduction, if we define y(t) as the response of an original system
and yr(t) as the response of a reduced order system for an identical input u(t), it is rea-
sonable to desire that ||y − yr||∞ be a small quantity. Indeed, if for a particular pair y(t)
and yr(t) we define ǫ = ||y − yr||∞, then it immediately follows from the definition in Eqn.
1 that

|y(t) − yr(t)| ≤ ǫ ∀t ≥ 0. (2)

Fig. 2 depicts the meaning of Eqn. 2 graphically. In the figure, the black signal represents
the response of the original system y(t), and the surrounding area denoted “error region”
represents a desired region in which one would like the response of a corresponding
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Figure 1. Hypothetical responses of an original and re-
duced order system produced via an SVD-based method.

reduced order model yr(t) to lie. In the context of Eqn. 2, the “height” of the error region
at every given time t is 2ǫ, indicating the desire for yr(t) to be close to y(t) uniformly over
all times.

1.3 Problem Formulation: L1 Norm minimization

We now focus on formulating the formal problem to be investigated in this paper. Our
focus is limited strictly to LTI systems, for which we wish to develop bounds of the following
nature: if we denote by L∞(R+)

L∞(R+) =

{

u : [0,∞) → R : sup
t≥0

|u(t)| < ∞
}

(3)

then for every input u ∈ L∞(R+), we wish to find some (hopefully small) real number
M > 0 such that

||y − yr||∞ ≤ M ||u||∞. (4)

If such a bound exists for an original system model and a reduced system model for every
bounded input u, then the peak output of the error between the original and reduced
model is always less than some multiple of the peak input value. In particular, due to
the assumption of linearity, when M < 1, such a bound provides a guarantee that the
pointwise error between y(t) and yr(t) will never be more than a fixed percentage of the
peak input value. When we denote by h(t) the impulse response operator of the original
system and by hr(t) the impulse response of the reduced order system, it is a well-known
fact (see, for instance, [13]) that the smallest value of M as given in Eqn. 4 is the L1 norm
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Figure 2. Depiction of full-order output signal surrounded
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of the error system with impulse response h(t) − hr(t):

||h − hr||1 =

∫ ∞

0

|h(t) − hr(t)|dt. (5)

Hence, the problem of finding a reduced order model of a given LTI system for which the
peak error between the original output and reduced order output is small can be posed in
the following manner: for a given order N , find some choice of hr(t) of order N for which
||h − hr||1 is small. Ideally, one would like to find that choice of hr(t) of order N such that
the quantity ||h − hr||1 is minimized, and that is the essential viewpoint that we take here.
While the problem of finding that choice of hr(t) which globally minimizes the L1 norm of
the error system is nonconvex and intractable to compute from a practical perspective,
we focus here on methods that search for local minimizers over a sufficiently rich set of
choices for hr(t) so as to provide reduced order approximations that are both sufficiently
accurate and computationally tractable.

The problem of producing reduced order models via minimization of the L1 norm ap-
pears to have been seldom considered in the literature. El-attar et. al. first considered this
problem in the context of some examples [6]. In the discrete-time setting, Sebakhy et.
al. consider a simple form of impulse response truncation to minimize the l1 norm of an
error sequence (||e||1 =

∑∞
k=1 |ek|) [22]. The closest work to the problem we consider here

appears to be a result from the System Identification literature in which a reduced order
model for a discrete-time system which minimizes the l1 norm of an error metric is com-
puted via a linear programming approach [12]. While there are substantial differences
with the class of problems being considered here as compared to [12], the underlying
technique of casting such problems as linear programs is the same. As we discuss in a
later section, a major advantage of this approach is that mixed problems in which the L1
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norm of an error system is minimized subject to a set of moment matching constraints
can be easily handled by our approach since the set of moment matching conditions can
be cast as a set of linear constraints on a set of decision variables. Also, as a byproduct
of our approach, the tools we develop here will be able to perform MOR for infinite di-
mensional systems, a stark contrast to standard moment matching and SVD-based tools
which operate only on finite order state space descriptions.

1.4 Document Outline

Section 2 outlines the L1 norm minimization algorithm and provides a complete char-
acterization of the linear programming (LP) problem that is solved at each iteration. In
Section 3, we introduce the family of basis functions over which the minimization algo-
rithm searches to produce a reduced order model with small L1 error norm. Moreover,
we show that this family of basis functions is sufficiently rich by proving that a certain
large class of LTI systems can be approximated with arbitrary accuracy via an expan-
sion of these basis functions. Section 4 describes how to incorporate moment matching
constraints into the LPs to formulate mixed moment matching/norm minimization prob-
lems and formally proves that arbitrary accuracy via an expansion of basis functions is
retained even in the presence of moment matching constraints. Section 5 summarizes
the overall algorithm and describes some practical considerations in the problem of se-
lecting an optimal basis from the family of basis functions under consideration. Section 6
illustrates the techniques described herein for two examples, one taken the solution of a
one-dimensional heat equation, and one taken from the circuits world. Section 7 briefly
describes how to extend the methods here— designed only for single-input, single-output
(SISO) systems—to a multi-input, multi-output (MIMO) generalization. We provide con-
cluding remarks in Section 8.
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2 Algorithm for Reduced Order Modeling via L1 Norm
Minimization

In this section, we describe a technique for computing reduced order models via an at-
tempt to minimize the L1 norm of the corresponding error system h(t) − hr(t). We first
consider a relaxed problem in which the reduced order model is constrained to be a linear
combination of a fixed set of basis functions and show that this problem can be cast as
an LP. We then turn to the process of selecting an appropriate set of basis functions, and
show that this problem can be efficiently cast as the solution of a (relatively) small number
of LPs.

2.1 Relaxation: Approximation via a Fixed Basis

At the heart of the algorithm we propose is an approximation scheme where the reduced
order model is constrained to be a linear combination of a fixed set of functions:

hr(t) =
N
∑

k=1

akgk(t) (6)

where gk(t), k = 1, 2, . . . , N , represent a set of fixed, known functions with finite L1 norm,
and where the parameters ak ∈ R represent a set of decision parameters that we wish to
select to make ||h−hr||1 as small as possible. As we show here, this problem can be cast
as an LP that can be solved using existing software packages. The reader unfamiliar with
linear programming is referred to [3] for an excellent introduction to the subject.

To begin, note that the problem of minimizing ||h − hr||1 is equivalent to:

min

∫ ∞

0

z(t)dt (7)

subject to z(t) ≥ h(t) −
N
∑

k=1

akgk(t)

z(t) ≥ −
(

h(t) −
N
∑

k=1

akgk(t)

)

since the two inequality constraints are equivalent to z(t) ≥ |h(t) − hr(t)|, and the choice
of z(t) which minimizes the integral expression must achieve this inequality with equality.
Note that Eqn. 7 represents an infinite dimensional LP with decision variables ak and
z(t) for all t ≥ 0. In order to solve this LP, we must resolve two issues: first, the infinite
dimensional LP must be replaced by an appropriate finite dimensional LP to fit the form of
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standard LP solvers. This will be achieved by gridding the real time axis in an appropriate
manner. A second issue arises from the fact that the horizon in Eqn. 7 is infinite. In
practice, it is possible to solve a finite horizon LP whose optimal solution is an upper
bound for the optimal solution of the original infinite horizon problem. We deal with the
second of these issues first.

To begin, note that for any T > 0

∫ ∞

0

z(t)dt =

∫ T

0

z(t)dt +

∫ ∞

T

z(t)dt (8)

≤
∫ T

0

z(t)dt +

∫ ∞

T

|h(t)|dt +
N
∑

k=0

|ak|
∫ ∞

T

|gk(t)|dt.

By introducing the slack variables wk ≥ |ak| for k = 1, 2, . . . , N , Eqn. 8 leads to the follow-
ing LP:

min

∫ T

0

z(t)dt + h̄ +
N
∑

k=1

βkwk (9)

subject to z(t) ≥ h(t) −
N
∑

k=1

akgk(t)

z(t) ≥ −
(

h(t) −
N
∑

k=1

akgk(t)

)

wk ≥ ak

wk ≥ −ak

where T is a specified horizon, k = 1, 2, . . . , N , and where

h̄ =

∫ ∞

T

|h(t)|dt (10)

βk =

∫ ∞

T

|gk(t)|dt.

By virtue of Eqn. 8, the minimal cost of the LP in Eqn. 9 provides an upper bound for the
minimal cost of the original infinite horizon LP of Eqn. 7. Note that for any given choice of
h(t), the quantity h̄ is a constant, and hence may be removed from the cost function (in
practice, T can always be chosen sufficiently large such that the effect of h̄ on the minimal
cost in Eqn. 9 is negligible).

Now, to relax the infinite dimensional LP to a finite dimensional version, we introduce a
grid on the time axis. While there are many ways to do this, here we consider the simplest
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method of imposing a grid that is uniformly spaced over the horizon length T . If we let
∆ represent the sampling interval, and define zm = z(m∆), hm = h(m∆), gkm = gk(m∆),
and M = ⌊T/∆⌋, then an approximation of the integral in Eqn. 9 via a Riemann sum leads
to:

min ∆
M
∑

m=1

zm +
N
∑

k=1

βkwk (11)

subject to zm ≥ hm −
N
∑

k=1

akgkm

zm ≥ −
(

hm −
N
∑

k=1

akgkm

)

wk ≥ ak

wk ≥ −ak

for all k = 1, 2, . . . , N and m = 1, 2, . . . , M . Here we assume that the value of ∆ is taken
sufficiently small (corresponding to a fine grid) so that the difference between the true
value of the integral in Eqn. 9 and the approximate value in Eqn. 11 is negligible. As
before, the decision variables ak provide the relative weights for each basis function gk(t)
in our approximation hr(t), and the auxiliary parameters wk and zm determine an upper
bound on the minimal L1 norm to the original problem of Eqn.7. The above LP can be
written in multiple forms, and can be transformed into whatever form is most convenient
for the particular software package that is used to provide a numerical solution.

2.2 L1 Norm Minimization Algorithm

The LP formulation of the last section begs the question: how does one choose the basis
functions gk(t)? First, recall that since we are trying to represent our approximate impulse
response hr(t) as a finite dimensional model (meaning that the corresponding transfer
function Hr(s) is a rational function of s), hr(t) must be expressable as a linear combina-
tion of (possibly complex) exponential terms. This suggests that the functions gk(t) should
involve “simple” linear combinations of exponential terms. Perhaps the simplest choice is
gk(t) = exp(−αkt), Re{αk} ≥ 0 so that our approximation takes the form

hr(t) =
N
∑

k=1

ake
−αkt. (12)

The problem of trying to choose the values of ak and αk to globally minimize ||h − hr||1 is
a non-convex optimization problem, and hence is practically not solvable. If, however, we
focus our attention on local minimizers, one naı̈ve method of computing an upper bound
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on the global minimum is as follows. Whenever the values of αk are fixed, the problem of
approximating h(t) via the hr(t) as in Eqn. 12 is an LP. By gridding each value of αk ∈ C

over some bounded region in the closed right-half plane, one could solve a sequence of
LPs (one for each possible combination of grid points) and use the values of ak and αk

which achieve the smallest cost over all the LPs that are solved.

While simple in concept, the above algorithm is computationally expensive since the
number of LPs which must be solved grows exponentially with the order of approximation
N . Indeed, if we grid each value of αk using P points, we must solve a total of P N LPs.
For a value of N = 10, even using a coarse grid of P = 10 points per value of αk results in
1010 LPs to be solved.

As an alternative to the above basis, consider the following choice:

gk(t) = tk−1e−αt (13)

where the single parameter α again satisfies Re{α} ≥ 0. Such a choice for gk(t) results in
an approximation of the form

hr(t) =
(

a1 + a2t + . . . + aN tN−1
)

e−αt, (14)

i.e., a polynomial in t multiplying a single decaying exponential term. The computational
advantage of using such a basis is, in fact, quite large. For a given value of N , rather
than having to grid N independent values and solving P N LPs, one need only grid the
single scalar variable α resulting in P LPs. Hence, again considering the case where
P = N = 10, we reduce the number of LPs we need to solve from 1010 down to 10
by using the choice of gk in Eqn. 13. Note that we can generalize this idea to consider
approximations of the form

hr(t) =

J
∑

j=1

pj(t)e
−αjt (15)

where the functions pj(t) are polynomials of fixed order with undetermined coefficients.
Such an approximation would require J independent grids, and assuming that J ≪ N ,
one still gains a large computational advantage over the original method since P J ≪ P N .

With such a large savings in computation, it is natural to wonder whether the choice
of Eqn. 13 is somehow too narrow to accurately approximate a sufficiently rich class of
signals. Fortunately, the answer to this question is no. Focusing on the case of approxi-
mation with just a single exponential parameter α, we show in the next section that there
is a broad class of signals which can be well-approximated by expressions of the form
shown in Eqn. 14. More formally, we show that, under some mild assumptions, one can
find a sequence of approximations of the form Eqn. 14 for increasing N such that the L1

norm of the error system h − hr converges to 0 as N → ∞.
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3 Convergence of Approximations: Ritz Basis

In this section, we prove that the approximations as determined by the choice of gk(t)
in Eqn. 13 converge in the L1 norm to a given impulse response h(t) under some mild
assumptions. Since the main result of this section is an adaptation of existing results in
functional analysis, we review those results first.

3.1 Convergence in L2: Ritz Approximations

Let the space L2(R+) denote the set of Lebesgue measurable functions f(t) defined for
t ≥ 0 such that the corresponding L2 norm of f

||f ||2 =

(
∫ ∞

0

|f(t)|2dt

)
1

2

(16)

is finite. A well-studied problem in the systems and control community is that of approx-
imating a given f ∈ L2(R+) via an expansion of the form

∑

akgk(t) where Gk(s), the
Laplace transform of gk(t), is a rational function of s. Convergence in these problems is
naturally measured in terms of the L2 norm; we say that the expansion converges if the
sequence of partial sums

fN(t) =
N
∑

k=1

akgk(t) (17)

converges in the L2 norm:
lim

N→∞
||f − fN ||2 = 0. (18)

A basis for L2(R+) is said to be complete if there exists a sequence of coefficients ak in
the expansion of Eqn. 17 such that the ||f − fN ||2 converges to 0 for every f ∈ L2(R+).
Complete bases, therefore, provide a set of elements that can well-approximate a wide
range of functions. Perhaps the most popular basis for L2(R+) is the Laguerre basis,
whose elements are described in the frequency domain via

Gk(s) =

√
2α

s + α

(

s − α

s + α

)k−1

, k = 1, 2, . . . (19)

where α satisfies Re{α} > 0. A complete basis [14], the Laguerre basis is often the basis
of choice for establishing theoretical statements due to the orthonormality of the basis
functions:

∫ ∞

0

gj(t)gk(t)dt =

{

0 j 6= k
1 j = k

Because of this property, the coefficients ak in the series expansion can be computed via
a projection of f onto the corresponding basis functions gk(t).
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While useful for theoretical statements, the Laguerre basis is less practical for numer-
ical computation, as it can be empirically noted that LP solvers often run into numerical
difficulties when dealing with the impulse responses gk(t) for large k. Moreover, easy-to-
obtain upper bounds on the quantity

βk =

∫ ∞

T

|gk(t)|dt

(from Eqn. 10 of the last section) are difficult to obtain and/or are very conservative,
making for over-inflated estimates of the minimal cost in the LP of Eqn. 11. A more
useful basis for our purposes here is a “de-orthogonalized” version of the Laguerre basis
known as the Ritz basis whose elements are described in the frequency domain via

Gk(s) =

(

α

s + α

)k

, k = 1, 2, . . . (20)

for Re{α} > 0 with corresponding impulse responses

gk(t) =
αk−1

(k − 1)!
tk−1e−αt, k = 1, 2, . . . (21)

Observe that the impulse responses of the Ritz basis vectors are scaled versions of the
proposed basis vectors of the last section in Eqn. 13. Also, note that when α is real, βk

can be calculated exactly as

βk = e−αT

k
∑

j=1

(αT )j−1

(j − 1)!
< 1 ∀k ≥ 1 (22)

When α is complex, exact expressions for βk are complicated, but simple upper bounds
are readily obtainable. Indeed, if we denote α = −αr + jω, where the real parameter αr is
positive, decomposition of the exponential terms into terms of the form exp(−αrt) cos(ωt)
and exp(−αrt) sin(ωt) yields upper bounds on βk by taking advantage of the fact that

∫ ∞

T

∣

∣tke−αrt cos(ωt + φ)
∣

∣ dt ≤
∫ ∞

T

tke−αrtdt (23)

for any value of φ ∈ R.

3.2 Remark: Ritz Approximations for Model Reduction

Our main task in this paper is to produce finite order models which approximate a higher
(possibly infinite) dimensional model. Finite truncations of Ritz approximations provide
for reduced order models by approximating the original model by a finite order model
with repeated poles, with the order of the reduced order model being equal to the term
of highest degree in the truncation. While we shall not discuss this here, it is a relatively
straightforward task in theory to convert truncations of Ritz approximations into finite order
state space models, which is often a much more convenient form for simulation.
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3.3 Ritz Approximation Convergence in L1

We denote by L1(R+) the set of Lebesgue measurable functions f(t) defined for t ≥ 0
for which ||f ||1 is finite. In this section, we prove that a broad subset of L1(R+) can be
well-approximated via a Ritz approximation such that the partial sums of the form Eqn.
17 (where gk(t) represent the Ritz basis vectors of Eqn. 21) converge in the L1 norm:
||f − fN ||1 → 0 as N → ∞. The specific subset of L1(R+) we consider is described in the
following proposition, whose proof can be found in the Appendix:

Proposition 3.1. Consider the set S of functions f ∈ L2(R+) which satisfy the condition
that f(t) = O(t−γ) for γ > 1, where f(t) = O(g(t)) is equivalent to the existence of
constants C > 0, t0 ≥ 0 such that

|f(t)| ≤ C|g(t)| ∀t ≥ t0.

Then S ⊂ L1(R+).

The set S encompasses a wide range of functions that are interesting from an ap-
plication standpoint, including all bounded functions that decay exponentially, and all
bounded functions that decay polynomially with exponent strictly greater than 1. Note
that S is broader than either of these two common subclasses and includes, for instance,
unbounded functions such as

f(t) =

{

t−
1

4 0 < t ≤ 1
0 otherwise

.

The ultimate goal of this section is to prove that there exists a Ritz approximation for every
f ∈ S which converges in the L1 norm. We first prove this result for a particular subset of
S, and then use this result to prove the result for all f ∈ S:

Proposition 3.2. Consider the subset of S̄ ⊂ S defined via f ∈ S̄ iff f ∈ S and f(t) =
O(t−2). For every f ∈ S̄, there exists a Ritz approximation such that the sequence of
partial sums

fN =
N
∑

k=1

ak

(αt)k−1

(k − 1)!
e−αt (24)

satisfies ||f − fN ||1 → 0 as N → ∞.

Equipped with Prop. 3.2 (whose proof can be found in the appendix), we now prove
the first main theoretical result of the paper:

Theorem 3.1. For every f ∈ S, there exists a Ritz approximation such that the sequence
of partial sums of Eqn. 24 satisfies ||f − fN ||1 → 0 as N → ∞.
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Proof. First, note that for any function f̂N̂ (t):

||f − fN ||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f − f̂N̂

t
γ

2 + 1
+

f̂N̂

t
γ

2 + 1
− fN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f − f̂N̂

t
γ

2 + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f̂N̂

t
γ

2 + 1
− fN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

. (25)

Note that the first norm on the righthand side of Eqn. 25 satisfies
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f − f̂N̂

t
γ

2 + 1
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∣
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∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣
(t

γ

2 + 1)f − f̂N̂

∣

∣

∣

∣

∣

∣

2
. (26)

Since ||(tγ
2 + 1)−1||2 ≤

√

γ/(γ − 1), the lefthand side of Eqn. 26 can be made arbitrarily
small for sufficiently large N̂ if the rightmost L2 norm of Eqn. 26 can be made arbitrarily
small. Since f(t) = O(t−γ), (t

γ

2 +1)f(t) = O(t−
γ

2 ), and it follows that (t
γ

2 +1)f(t) ∈ L2(R+).
Hence, there exists a Ritz approximation f̂N̂(t) for which the lefthand side of Eqn. 26 can
be made arbitrarily small for N̂ sufficiently large.

Now, for every fixed N̂ , note that the Ritz approximation f̂N̂(t) is a finite sum of expo-
nentially decaying terms. It follows that

f̂N̂ (t)

t
γ
2 + 1

= O(t−2).

Hence, the result of Prop. 3.2 applies, and there exists a Ritz approximation fN (t) such
that the rightmost norm of Eqn. 25 can be made arbitrarily small for N sufficiently large. It
thus follows that there exists a Ritz approximation fN(t) such that ||f − fN ||1 can be made
arbitrarily small for N sufficiently large.

Thm. 3.1 states that for any f ∈ S, by taking N sufficiently large, one can always well-
approximate f in the L1 norm via a Ritz approximation for any value of the parameter α
of Eqn. 21. Hence, given a desired tolerance ǫ for which one desires ||f − fN ||1 < ǫ, the
process of finding some reduced order model which satisfies a given tolerance constraint
is easy: pick some value of α, and keep increasing the order N until the desired error
tolerance is achieved. It should be apparent, however, that certain values of the parameter
α are better than others in the sense that a poor choice of α could lead to a very large
value of N that is required to satisfy a given tolerance constraint which potentially defeats
the point of model reduction. We discuss the issue of trying to find “good” choices of α in
a later section.
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4 Addition of Moment Matching Constraints

We now turn to the incorporation of moment matching constraints into the L1 minimization
algorithm discussed in Section 2. Note that for any fixed basis choice gk(t), a moment
matching constraint of order m at a frequency s0 takes the form

1

m!
H(m)(s0) =

1

m!

N
∑

k=1

akG
(m)
k (s0) (27)

where H(m)(s) and G
(m)
k (s) represent the m−th derivatives of the Laplace transforms of

the original impulse response h(t) and basis functions gk(t), respectively. When using the
Ritz basis, the moments of Gk(s) can be calculated explicitly as

G
(m)
k (s) =

{

(

α
s+α

)k
m = 0

(−1)mi(i+1)···(i+m−1)αk

m!

(

1
s+α

)k+m
m = 1, 2, . . .

. (28)

Hence, whenever the value of the parameter α in the Ritz approximations is fixed, each
moment matching constraint is a linear equality constraint on the decision variables ak

and can be added as an additional constraint to the corresponding LP formulation:

min ∆
M
∑

m=1

zm +
N
∑

k=1

βkwk (29)

subject to zm ≥ hm −
N
∑

k=1

akgkm

zm ≥ −
(

hm −
N
∑

k=1

akgkm

)

wk ≥ ak

wk ≥ −ak

H(msl
)(sl) =

N
∑

k=1

akG
(msl

)

k (sl)

where sl ∈ C, l = 1, 2, . . . , L, represent a set of (possibly repeated) frequencies for which
we wish to match the msl

−th moment of the original and reduced order models.

4.1 Convergence of Ritz Approximations with Moment Matchin g Con-
straints

We now prove that the addition of moment matching constraints does not affect our ability
to well-approximate in the L1 norm via Ritz approximations. In fact, as we show in the
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next two propositions, every well-defined moment of a function f(t) with Laplace trans-
form F (s) has a Ritz approximation whose corresponding moment converges to the true
moment of F (s).

Proposition 4.1. For every f(t) ∈ S with Laplace transform F (s), the following statements
hold:

1. The zeroth order moment of F (s) at frequency s0 exists for all s0 with Re{s0} ≥ 0.
Moreover, any Ritz approximation fN(t) for which ||f − fN ||1 → 0 also satisfies the
condition

FN(s0) → F (s0) (30)

for all s0 in the closed right half-plane, where FN(s) denotes Laplace transforms of
fN(t).

2. The m−th order moments of F (s) at frequency s0 exists for all m = 1, 2, . . . for all s0

with Re{s0} > 0. Moreover, any Ritz approximation fN(t) for which ||f − fN ||1 → 0
also satisfies the condition

1

m!
F

(m)
N (s0) →

1

m!
F (m)(s0) (31)

for all s0 in the open right half-plane.

The proof of this statement can be found in the appendix.

If f(t) decays polynomially, higher order moments may not exist when Re{s0} = 0
since tmf(t) may grow unboundedly as t → ∞. If, however, f(t) decays exponentially, all
moments are well-defined on the jω axis. The following proposition, whose proof can be
found in the appendix, formalizes this statement:

Proposition 4.2. Consider f(t) ∈ L2(R+) and f(t) = O(e−γt), γ > 0. The m−th order
moments of F (s) (the Laplace transform of f(t)) at a frequency s0 with Re{s0} = 0 exist
for all m = 0, 1, . . .. Moreover, any Ritz approximation which satisfies the condition ||f −
fN ||1 → 0 also satisfies the condition

1

m!
F

(m)
N (s0) →

1

m!
F (m)(s0) (32)

for all s0 on the jω axis.

Using Prop. 4.1 and 4.2, we can now prove that the addition of a finite number of
moment matching constraints does not affect the ability of ||f − fN ||1 to converge to 0:

Theorem 4.1. Consider f(t) ∈ S. Subject to a finite number of well-defined moment
matching constraints (as given by Prop. 4.1 and Prop. 4.2), there exists a Ritz approxima-
tion fN for which ||f − fN ||1 → 0.
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Proof. From the results of Prop. 4.1 and Prop. 4.2, it follows that for every ǫ > 0, there
exists an N−th order Ritz approximation f(t) =

∑N

k=1 akgk(t) with N sufficiently large such
that

∫ ∞

0

∣

∣

∣

∣

∣

h(t) −
N
∑

k=1

akgk(t)

∣

∣

∣

∣

∣

dt ≤ ǫ (33)

∣

∣

∣

∣

∣

H(msl
)(sl) −

N
∑

k=1

akG
(msl

)(sl)

∣

∣

∣

∣

∣

≤ ǫ l = 1, 2, . . . , L (34)

where the L inequality constraints represent moment matching constraints of order msl
at

frequency sl. For each L, define

ǫl = H(msl
)(sl) −

N
∑

k=1

akG
(msl

)(sl). (35)

Clearly, |ǫl| ≤ ǫ for l = 1, 2, . . . , L. Now, suppose there exists a sequence {δk}N
k=1 such

that
N
∑

k=1

δkG
(msl

)(sl) = ǫl, l = 1, 2, . . . L (36)

(we shall prove existence of such a sequence shortly). Then it follows that the Ritz approx-
imation with coefficients ãk = ak +δk satisfies each of the L moment matching constraints.
To establish convergence of the Ritz approximation with coefficients ãk in the L1 norm, we
wish to show that

∫ ∞

0

∣

∣

∣

∣

∣

h(t) −
N
∑

k=1

ãkgk(t)

∣

∣

∣

∣

∣

dt < λǫ (37)

for some value of λ that does not depend on ǫ. We have

∫ ∞

0

∣

∣

∣

∣

∣

h(t) −
N
∑

k=1

ãkgk(t)

∣

∣

∣

∣

∣

dt ≤
∫ ∞

0

∣

∣

∣

∣

∣

h(t) −
N
∑

k=1

akgk(t)

∣

∣

∣

∣

∣

dt +

∫ ∞

0

∣

∣

∣

∣

∣

N
∑

k=1

δkgk(t)

∣

∣

∣

∣

∣

dt. (38)

The first term on the right side above is upper bounded by ǫ by assumption. Convergence,
hence, reduces to showing that the second term on the right hand side can be made
sufficiently small.

Note that the coefficients δk satisfy a linear constraint of the form

AN δ̄ = ǭ (39)

where δ̄ =
[

δ1 δ2 . . . δN

]

, and ǭ =
[

ǫ1 ǫ2 . . . ǫL

]

. We assume that the L rows of
A are linearly independent (otherwise, there is a redundant moment matching constraint
that can be removed).
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We now show that for any N ≥ L, there exists δ̄ which satisfies Eqn. 39 and which
makes the right most term of Eqn. 38 sufficiently small. Let N0 ≥ L. Then there exists
L linearly independent columns of AN0

. Consider a map N0(j) for j = 1, 2, . . . , L such
that the L × L matrix AL

N0
whose j−th column is the N0(j)−th column of AN0

is invertible.
Similarly, let δ̄L be defined via δ̄L

j = δ̄N0(j). Then the system of equations AL
N0

δ̄L = ǭ is
solvable for δ̄L and can be written explicitly as δ̄L = (AL

N0
)−1ǭ. It follows that ||δ̄L||∞ ≤

ǫ||(AL
N0

)−1||∞. Now, observe that the vector δ̄ with

δ̄k =

{

δ̄L
k k = N0(j), j = 1, 2, . . . , L
0 otherwise

(40)

satisfies Eqn. 39 for every N ≥ N0. Hence, it follows that there exists a choice of the δk’s
such that

∫ ∞

0

|δkgk(t)|dt ≤ ǫ||(AL
N0

)−1||∞
∑

k

∫ ∞

0

|gk(t)|dt. (41)

where the sum on the righthand side is taken over only those k which can be represented
as k = N0(j), j = 1, 2, . . . , L. Since the sum is finite, convergence follows.
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5 Summary of Algorithm and Practical Considerations

We begin by briefly summarizing the steps of the algorithm we propose for producing
reduced order models with small L1 error norm subject to moment matching constraints:

User-specified Data. To begin, the user must select an order N for the reduced order
model, and a set of values A for the parameter α in the Ritz approximation of Eqn.
21. Additionally, the user must select a horizon time T over which the L1 norm will
be approximated, along with an appropriate grid spacing ∆ with which to sample the
time axis. Smaller ∆ will, obviously, provide better Riemann sum approximations to
the desired integrals, and larger T will provide less conservative upper bounds on
the L1 norm computation (reflected by the fact that the upper bound coefficients βk

of Eqn. 10 are monotonically decreasing functions of T ). Note that, once ∆ and T
have been selected, the samples hm of the original impulse response h(t) in the LP
formulation of Eqn. 29 are automatically determined.

In addition to the above quantities, the user must also specify a (possibly empty) set
of frequencies sl and corresponding moments msl

to be matched (i.e., we compute
H(msl

)(sl)).

Quantities to Compute for each LP Iteration. For each value of α ∈ A, one must com-
pute several quantities in order to set up the corresponding LP. First, one must com-
pute the samples gkm of the Ritz basis vectors gk(t) for k = 1, 2, . . . , N . Also, the
quantities βk must be computed as well. Finally, one must compute the values
Gmsl

)(sl) that are necessary for moment matching constraints.

With all of the above quantities in place, one can loop over all α ∈ A and solve each
corresponding LP. The value of α which minimizes the cost of Eqn. 29 yields the minimal
upper bound on ||h−hr||1, and the coefficients ak together with the transfer functions gk(t)
for this value of α determine an N−th order model hr(t) which achieves the minimal upper
bound.

5.1 Selecting the Set A

The success of the above algorithm largely hinges on the ability to select a good value
of the Ritz approximation parameter α which is directly correlated to the choice of the
grid set A. In what follows, we focus on the case where α is a real parameter, though
appropriate modifications can be made in the case that α is complex.

Perhaps the simplest way of selecting the set A is to uniformly grid the real axis:

A = {α : α = j∆a, j = 1, 2, . . . , J} (42)
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where ∆a > 0 and J is a user-specified constant. It is clear that smaller choices of ∆a

and larger choices of J provide a finer grid of the real axis and, hence, should produce
smaller upper bounds on the minimal value of ||h − hr||1.

While simple, the above brute-force method can be computationally expensive if the
user tries to search for a relatively tight upper bound on the minimal value of ||h − hr||1.
While the number of LPs which are solved grow linearly with J , it is typical to refine a grid
by dividing the value of ∆a by a particular value, i.e., by replacing ∆a by ∆a/2. Assuming
even that the maximal value of α ∈ A does not increase during grid refinement, this
causes the corresponding value of J to grow exponentially with successive refinements,
eliminating some of the benefits of parameterizing the basis vectors gk(t) via a single
scalar.

A simple heuristic approach which bypasses some of the above difficulty is the follow-
ing: initially impose a coarse grid and refine the grid until one is fairly confident that the
sampling is sufficiently fine to be indicative of the true behavior of the minimal cost (this
can be done, for instance, by examining a graph of the minimal cost at the sample points
in the current grid). Once the grid is determined to be sufficiently fine, one can locate
an interval around which a minimizing value of α appears to lie and then refine the grid
only in this interval. When appropriately carried out, such a procedure can only guaran-
tee convergence to some local minimum, rather than the minimal value on the interval
I = [∆a, J∆a] (the smallest interval containing the original grid). Still, it has been empir-
ically observed in multiple examples that the minimal value of the cost function tends to
vary slowly and with few changes in monotonicity, so that carrying out a procedure in this
manner is likely to converge to the minimum on I for many problem instances. In fact,
while we shall not do so here, one can actually prove that the minimal cost varies contin-
uously as a function of α, which seemingly indicates further promise for convergence to a
minimum on I, but which does not, unfortunately, provide a provable guarantee.
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6 Examples

In this section, we apply the techniques described in the prior sections to two infinite
dimensional examples. In each case, we compare the performance of the reduced order
models we obtain via mixed L1 norm minimization/moment matching to an existing MOR
method.

6.1 Example: One-dimensional Heat Equation

Consider a semi-infinite rod described by the half-line x ≥ 0, and let u(x, t) denote the
temperature of the rod at position x at time t. The evolution of the temperature distribution
can be described via the one-dimensional heat equation, given by

ut − uxx = 0. (43)

Suppose that the temperature at x = 0 is controlled via an actuator, and that we are
interested in computing the corresponding temperature at x = 1 for all t ≥ 0. Such a
problem is of interest in the case when one wishes to control the temperature of the rod
at a certain point but can only apply heat at a different location. Subject to the initial
value constraint u(x, 0) = 0, x ≥ 0 and the boundary constraint, u(∞, t) = 0, t ≥ 0, this
corresponds to finding the transfer function and/or impulse response operator from u(0, t)
to u(1, t). A simple calculation shows that the transfer function H(s) is given by

H(s) ,
U(1, s)

U(0, s)
= e−

√
s (44)

where U(0, s) and U(1, s) represent Laplace transforms of u(0, t) and u(1, t), respectively.
The corresponding impulse response h(t) is given by

h(t) =
1√
4πt3

e−
1

4t , t > 0. (45)

It is apparent that the transfer function H(s) is infinite dimensional since it is not a rational
function of s. Also, observe that h(t) decays as 1/t1.5, which satisfies the condition of
Thm. 3.1 so that h(t) can be well-approximated in the L1 norm via a Ritz approximation.
Suppose that we are interested in producing a finite order approximation hr(t) to the
original impulse response h(t) such that ||h − hr||1 is small, and also such that the DC
gain of the original and reduced order models are equal (i.e., H(0) = Hr(0) = 1).

Using the procedure described in the paper, we found a 10th order model Hr(s) with
Ritz parameter value of α = 0.5. A plot of the original impulse response h(t) and the
reduced order impulse response hr(t) are shown in Fig. 3. This value of α was found to
produce an upper bound on the error norm ||h − hr||1 of 0.206. Hence for any bounded
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systems using the mixed L1/moment matching algorithm.

input x(t), the outputs of the original model y(t) and the reduced order model yr(t) satisfy
the bound

|y(t) − yr(t)| ≤ 0.206||x||∞. (46)

In particular, when ||x||∞ = 1, we find that |y(t)− yr(t)| ≤ 0.206 for any bounded input with
peak magnitude of 1.

The step response of both the original and reduced order system are depicted in Fig.
4. Observe that the reduced order step response approaches the final steady-state value
of 1 much more quickly than the step response of the original system. This should be
expected since the original impulse response h(t) of Eqn. 45 decays polynomially as
1/t1.5. Whereas the Ritz approximation decays exponentially. Nevertheless, the steady-
state values are both equal to 1 by design, since we imposed the constraint that H(0) =
Hr(0). Moreover, Eqn. 46 guarantees that the approximate response will never deviate
from the true response by more than 0.206. Indeed, one can verify by examining the
graph of Fig. 4 that the maximum deviation between the two step responses is roughly
0.09 < 0.206.

As a comparison, we also computed a 10th order reduced order model via a moment
matching method. Specifically, we represent Hr(s) = p(s)/q(s) where q(s) = (s + 0.5)10

(hence using the same pole locations as we used above for the L1/moment matching
technique), and we chose the numerator p(s) such that H(s) = Hr(s) at the frequen-
cies s = 0, j, 2j, 3j, 4j, and 5j. In other words, we found a reduced order model whose
frequency response matches the original frequency response at several points in a low
frequency range. The reduced order impulse response that is obtained via this method is
shown in Fig. 5. While the steady-state value of the step response of this reduced order
system is equal to the steady-state value of the original system, it is clear that the step re-
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sponses will deviate very significantly during the transient phase. One finds that the step
response of this approximate system dips to a value of approximately −3800 at t ≈ 18s.
Indeed, the value of ||h − hr||1 for this reduced order model is roughly 7600!

6.2 Example: Bandpass Filter with Time Delay

Fig. 6 depicts a circuit consisting of an RLC bandpass filter, along with an ideal transmis-
sion line. The transmission line is modeled mathematically as a pure time delay tD. For
a unit time delay, and for the values R = 2, L = 1, C = 1/10001, the input-output transfer
function of this circuit is given by

H(s) ,
Vout(s)

Vin(s)
= e−s 2s

(s + 1)2 + 10, 000
(47)

with corresponding impulse response

h(t) =

{

e−(t−1) (2 cos 100(t− 1) − 0.02 sin 100(t − 1)) t ≥ 1
0 t < 1

. (48)

It is clear that H(s) is infinite-dimensional due to the presence of the term exp(−s), and
our goal here is to find a finite dimensional approximation with small error norm ||h− hr||1
subject to the additional constraint that the H(s) and Hr(s) match exactly at the resonant
frequency of the RLC filter, i.e. that H(100j) = Hr(100j). Because of the highly oscillatory
nature of the impulse response, approximating the original h(t) by a Ritz approximation
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whose parameter α is real is unwise, since this would require a very high order polynomial
multiplying exp(−αt) to match h(t) with any reasonable amount of accuracy. Through trial
and error, it was quickly discovered that using a value of α = −αr + 100j, where αr is a
positive real parameter, appears to yield the best results, an unsurprising phenomenon
since the system naturally oscillates at 100 rad/sec.

Using a 12th order model, we find that a value of αr = 3.25 yields an error norm
upper bound of ||h − hr||1 ≤ 0.297. The impulse response of the original and reduced
order models is shown in Fig. 7. While it is difficult to resolve finer features in this graph,
observe qualitatively that hr(t) is small on the interval 0 ≤ t ≤ 1 where h(t) is identically
0, and quickly “catches up” to the oscillatory portion of h(t) for t ≥ 1.

As a comparison, we created an alternative reduced order model using the follow-
ing technique: the time delay in Eqn. 47 was approximated via a high order (50th order)
Padé approximation, and the resulting system was reduced to a 12th order system using a
Truncated Balanced Realization (TBR) algorithm. The essential reasoning behind such an
approach is that TBR algorithms are designed to produce small error norms, where error
is measured in terms of power instead of peak amplitude. Intuitively speaking, by com-
paring the behavior of the minimal L1 norm approaches here to an SVD-based method,
we are trying to assess whether SVD-based methods produce small L1 norms “automat-
ically” without explicitly incorporating such measures into their cost criterion. Since TBR
operates on finite-dimensional LTI systems, one must first approximate the non-rational
portion by a rational approximation before applying the algorithm.

Performing the above process, we found that the reduced order model obtained via
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this alternate method produces an L1 error norm ||h−hr||1 = 8.889, more than an order of
magnitude larger than the reduced order model obtained via the mixed L1/moment match-
ing algorithm. Also for comparison, we computed the response of the original system,
reduced order system obtained via L1/moment matching, and the reduced order system
obtained via the Padé approximation and TBR for the input cos 100t. The responses we
obtained are depicted in Fig. 8. Observe that the responses of the original model and
reduced order model obtained via mixed L1/moment matching track each other exactly.
Such tracking is guaranteed from the moment matching constraint H(100j) = Hr(100j).
By contrast, the response of the system produced via the Padé approximation and TBR
exhibits a phase lag.

6.3 General Remarks

The computation for both of the examples presented above was performed in MATLAB
using the freeware sedumi as the as the core LP solver engine. For a given order of
approximation N , each example required solving for no more than 10-15 values of the
Ritz parameter α before the improvement in the L1 error norm ceased to significant.

The order N in each of these examples was chosen somewhat arbitrarily. While larger
N and longer horizon times T did indicate that the upper bounds on the error norms
were strictly decreasing, the run time of each LP became significantly slower beyond
certain thresholds since the computer system would run out cache memory. The value
of N was, therefore, kept not-too-large in order to be able to carry out the necessary
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computations quickly. It is an important area of future research to devise computationally
efficient ways to cast and solve the core linear programs that are solved at each iteration
of the algorithm.
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7 Extensions to Multi-Input, Multi-Output Systems

While we have focused our discussion around SISO systems, the techniques discussed
here can be readily applied to MIMO systems, as well. The changes to the algorithms in
moving from SISO to MIMO are primarily centered in the formulation of the corresponding
linear programming problems, so we touch upon that briefly here.

A MIMO LTI system with impulse response matrix H(t) has L1 norm given by

||H||1 = max
i

∑

j

∫ ∞

0

|hij(t)|dt (49)

where hij(t) represents the (i, j)−th entry of H(t). Again, assuming a fixed set of basis
functions gk(t), our task is to find a matrix Hr(t) with (i, j)−th entry hij

r (t) of the form

hij
r (t) =

Nij
∑

k=1

aij
k gk(t) (50)

such that ||H−Hr||1 is minimized. We can cast this minimization problem in the following
manner:

min C (51)

subject to C ≥ ci

ci =
∑

j

cij

cij =

∫ ∞

0

|hij(t) −
Nij
∑

k=1

aij
k gk(t)|dt

Each cij represents the cost functional for a single SISO L1 norm minimization problem.
Hence, one can introduce slack variables and set up moment matching constraints for
each cij as presented in the prior sections.
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8 Conclusion

We have introduced a new framework for model order reduction of LTI systems that is well-
suited for simulation purposes. The framework, which can preserve key frequency charac-
teristics of the original model while simultaneously minimizing a bound on the “closeness”
of the original and reduced order responses in a point-wise sense, can be implemented
efficiently using a relatively small number of user-specified iterations, as demonstrated by
two specific examples.

One specific direction in which the work described here can be extended involves
investigating methods which produce tighter error bounds. While the bounds provided
here are least upper bounds in the sense that there always exists an input for which the
corresponding difference in outputs will achieve the L1 norm error bound with equality,
such inputs are typically very specific and not encountered in typical application. Meth-
ods of constraining the set of inputs to be less “diabolical” via the addition of additional
constraints on the input (e.g., bounds on the derivative of the input) or via some sort of
weighting procedure are desirable.

Another issue which deserves attention is that of robustness. While we assumed
here that the models under consideration were known exactly, in many cases, the models
of interest are described via parameters that contain some inherent uncertainty. In this
case, it is useful to produce reduced order models that make the L1 norm of the error
small for an entire family of high order models. Depending upon the manner in which
uncertainty enters the model descriptions, the computational complexity of solving such
problems could be moderate or could be very great. Hence, determining a set of model
class descriptions for which such problems could be solved efficiently would be of great
practical use.

Finally, while gridding the set A is not too daunting of a task, it is of interest to examine
whether there are intelligent of methods of selecting good values of the Ritz parameter
α to circumvent gridding entirely. A recent publication [21] examines the use of Laguerre
expansions for a model reduction problem which attempts to minimize a quadratic cost
function, and computation of the optimal value of α is observed to converge in a process
that requires very few iterations. While the problem considered in [21] is significantly
different from what we consider here, it would be interesting to investigate whether there
exists a class of similar problems which can be used as a heuristic for determining good
values of α for the given L1 setting.
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9 Appendix: Proofs of Technical Statements

Proof of Prop. 3.1

We must show that every f ∈ S satisfies f ∈ L1(R+). To begin, note that if ||f ||1 exists

||f ||1 =

∫ t0

0

|f(t)|dt +

∫ ∞

t0

|f(t)|dt (52)

where t0 is defined as in Prop. 3.1. By virtue of the Cauchy-Schwartz inequality, the first
integral in Eqn. 52 satisfies

∫ t0

0

|f(t)|dt ≤
√

t0

(
∫ t0

0

|f(t)|2
)

1

2

< ∞ (53)

since f ∈ L2(R+). The second integral in Eqn. 52 satisfies
∫ ∞

t0

|f(t)|dt ≤
∫ ∞

t0

Ct−γdt =
Ct1−γ

0

γ − 1
(54)

since γ > 1. Since both quantities on the righthand side of Eqn. 52 are bounded above,
f ∈ L1(R+).

Proof of Prop. 3.2

We first introduce the notation f̂N (t) = (αt + 1)fN(t), where α is as in Eqn. 24. For every
N ∈ Z+, as a result of the Cauchy-Schwartz Inequality:

||f − fN ||1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f − f̂N

αt + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
∣

∣

∣

∣

∣

∣

∣

∣

1

αt + 1

∣

∣

∣

∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

∣
(αt + 1)f − f̂N

∣

∣

∣

∣

∣

∣

2
. (55)

Notice that since ||(αt + 1)−1||2 = 1/
√

α, convergence in the L1 norm will follow if f̂N(t)
converges to (αt+1)f(t) in the L2 norm. Indeed, since f(t) = O(t−2), (αt+1)f(t) = O(t−1),
and, hence, (αt + 1)f(t) ∈ L2(R+). Therefore, it follows from the standard results on L2

theory presented at the beginning of Section 3 that there exists a Ritz approximation f̂N(t)
which converges to (αt + 1)f(t) in the L2 norm.

What remains to be shown is that fN(t), itself, can be written as a Ritz approximation.
If we assume that fN(t) has a Ritz approximation for the same value of α in Eqn. 24 as
the Ritz approximation f̂N(t), and if we denote the corresponding expansion coefficients
of fN(t) and f̂N(t) by ak and âk respectively, then multiplying the series expansion of fN(t)
by αt + 1 and equating coefficients yields the relationship

âk = ak + kak−1. (56)

Since Eqn. 56 implies that â1 = a1, the above relationship can be solved recursively for ak

via ak = âk − kak−1, which shows that fN(t) can be expressed as a Ritz approximation.
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Proof of Prop. 4.1

We prove only the second item as the proof of the first item is similar. In what follows,
we scale all moments by m! for notational simplicity. To begin, note that the scaled m−th
moment at a frequency s0 can be written as

F (m)(s0) = (−1)m

∫ ∞

0

tmf(t)e−s0tdt. (57)

Hence, the m−th order moment at frequency s0 is well-defined if the integral on the right
hand side of Eqn. 57 converges. We have

∣

∣

∣

∣

∫ ∞

0

tmf(t)e−s0tdt

∣

∣

∣

∣

≤ sup
t≥0

|tme−s0t|
∫ ∞

0

|f(t)|dt. (58)

Because Re{s0} > 0, tme−s0t is bounded. Moreover, f(t) ∈ L1(R+) via Prop. 3.1, hence
the moment is well-defined.

To prove convergence of the Ritz approximation moments to the true moment, let fN(t)
be any Ritz approximation which converges in the L1 norm. Now

∣

∣

∣
F (m)(s0) − F

(m)
N (s0)

∣

∣

∣
=

∣

∣

∣

∣

∫ ∞

0

tm(f(t) − fN(t))e−s0tdt

∣

∣

∣

∣

(59)

≤ sup
t≥0

|tme−s0t|
∫ ∞

0

|f(t) − fN(t)|dt.

Hence, convergence of the moment follows via convergence of ||f − fN ||1.

Proof of Prop. 4.2

Again, we scale all moments by m! for notational simplicity. By the assumed exponential
decay of f , there exists a constant C such that |f(t)| ≤ Ce−γt for all t ≥ 0. Hence, with
Re{s0} = 0

∣

∣F (m)(s0)
∣

∣ =

∣

∣

∣

∣

∫ ∞

0

tmf(t)e−s0tdt

∣

∣

∣

∣

≤ C

∫ ∞

0

tme−γtdt. (60)

Since the rightmost integral converges for all m ≥ 0, we conclude that the m−th order
moments exist and are well-defined at all frequencies along the jω axis.
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To prove convergence of the moments, note that for any ǫ > 0

∣

∣

∣
F (m)(s0) − F

(m)
N (s0)

∣

∣

∣
=

∣

∣

∣

∣

∫ ∞

0

tm(f(t) − fN(t))e−s0tdt

∣

∣

∣

∣

(61)

=

∣

∣

∣

∣

∫ ∞

0

tme−ǫt(f(t)eǫt − fN(t)eǫt)e−s0tdt

∣

∣

∣

∣

≤ sup
t≥0

∣

∣tme−ǫt
∣

∣

∫ ∞

0

|f(t)eǫt − fN(t)eǫt|dt

The supremum in the last line above exists for every m ≥ 0 for any ǫ > 0. Hence,
convergence reduces to finding a choice of ǫ sufficiently small such that ||feǫt−fNeǫt||1 →
0. Note that for any ǫ > 0, we have

∫ ∞

0

|f(t)eǫt − fN (t)eǫt|dt =

∫ ∞

0

|f(t)eǫt − f(t) + f(t) − fN(t)eǫt − fN(t) + fN(t)|dt (62)

≤
∫ ∞

0

|f(t) − fN(t)|dt +

∫ ∞

0

|f(t) − fN(t)|(eǫt − 1)dt

The left integral above can be made arbitrarily small for a sufficiently large choice of N
by the assumed convergence of the Ritz approximation in the L1 norm. To prove that the
right integral can be made arbitrarily small, note that

∫ ∞

0

|f(t)−fN (t)|(eǫt−1)dt =

∫ T

0

|f(t)−fN (t)|(eǫt−1)dt+

∫ ∞

T

|f(t)−fN(t)|(eǫt−1)dt (63)

for any T > 0. Now, since f(t) = O(e−γt) and fN(t) is a finite sum of exponentially
decaying functions, there exists γ′ > 0 such that f(t) − fN (t) = O(e−γ′t). Hence (f(t) −
fN(t))(eǫt − 1) = O(e(−γ′+ǫ)t), which decays exponentially for ǫ sufficiently small. Hence,
by choosing T sufficiently large, the right-most integral in Eqn. 63 can be made arbitrarily
small for N sufficiently large. Now, observe that

∫ T

0

|f(t) − fN (t)|(eǫt − 1)dt ≤ |eǫT − 1|
∫ T

0

|f(t) − fN(t)|dt. (64)

Since limǫ→0 eǫT = 1 for every fixed T , one can choose ǫ sufficiently to make the right hand
side of Eqn. 64 arbitrarily small for sufficiently large N .
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